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Abstract. The stability of an infinitely long magnetic fluid column of weak viscous effects is
investigated. The column is subjected to a periodic azimuthal magnetic field and a rigid-body
rotation. Non-axisymmetric two-dimensional perturbations are considered in this investigation.
Linear analysis leads to a Mathieu equation with complex coefficients. The analytical results
show that the constant magnetic field plays a stabilizing role and can be used to suppress
the instability due to the rotation. When the field has been oscillating, the stabilizing role of
the amplitude of the magnetic field decreases somewhat due to the applied frequencyω0. The
oscillating magnetic field plays a dual role in the stability criterion. The increase of the azimuthal
wavenumber decreases the unstable region due to the increase of the column radius. A small
viscosity plays a destabilizing effect due to the influence of the angular velocity in the presence
of a constant or an oscillating magnetic field. A magnetic column can be stabilized at a given
azimuthal wavenumber by a suitable choice of the angular velocity, the density and viscosity
for the outer fluid being greater than the corresponding parameters for the inside fluid.

1. Introduction

The subject of the stability of a magnetic fluid column when subjected to an applied magnetic
field has attracted a great deal of attention in recent years. The stability of a magnetic fluid
jet when stressed with a constant magnetic field was of considerable interest to Rosensweig
[1]. It was observed experimentally that the applied magnetic field inhibits the breakup of
capillary magnetic fluid jets. The stability of a magnetic fluid column was experimentally
demonstrated by Zelazo and Melcher [2]. Malik and Singh [3] have investigated the stability
of a magnetic fluid jet by constructing the respective Lagrangian functions and solving the
associated Euler–Lagrangian equations of motion in the presence of a magnetic field when
the field is either azimuthal or axial. They used the energy principle to derive the dispersion
relation with their analysis based on axial perturbations.

The stability of a rigidly rotating fluid column was studied by Alterman [4]. It was
found that under certain conditions the rotation may have a stabilizing or destabilizing effect.
Hocking and Michael [5] demonstrated that rotation has a destabilizing effect. Bauer [6–8],
in the absence of a magnetic field, has analysed a rigidly rotating fluid column in a variety
of geometries. Wilson [9] investigated the effect of an axial magnetic field on the capillary
instability of an infinitely long, rigidly rotating, cylindrical fluid column. A linear stability
analysis has been implemented for the Taylor–Dean flow (a viscous flow between rotating
concentric cylinders with a pressure gradient acting in the azimuthal direction) by Chen and
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Chang [10]. Flow between concentric cylinders with the inner cylinder rotating and an axial
pressure gradient imposed in the annulus reveals a rich variety of flow regimes depending
on the flow conditions. The occurrence of these flow regimes was studied experimentally
by both visually and optically detecting the transition from one flow regime to another by
Lueptowet al [11].

The phenomenon of parametric resonance arises in many branches of physics and
engineering. Donnelly [12] has found experimentally that cylindrical Coutte flow can be
stabilized somewhat by having the velocity of the inner wall oscillate about a mean value.
The stability of a liquid jet under a time-dependent electric field has been investigated by
Mohamed and Nayyar [13] and Mohamedet al [14]. Recently, El-Dib [15] has carried
out the stability analysis of an oscillating liquid column subjected to a periodic rigid-body
rotation. A Mathieu equation with a parametric imaginary damping term was obtained
and analysed. El-Dib and Moatimid [16] and Moatimid and El-Dib [17] have developed
theoretical analysis to investigate the effect of a periodic rotation of a cylindrical liquid jet
under the influence of an axial and radial constant electric field.

The present work is to examine the stability of capillary waves of a rigidly rotating
magnetic fluid column subjected to a periodic azimuthal magnetic field for non-axisymmetric
two-dimensional perturbations.

2. Formulation

A magnetic fluid column performs a rigid-body rotation, in a weightless condition, with a
constant angular velocity,�1, about its axis of symmetry having densityρ1 and magnetic
permeabilityµ1. The magnetic fluid column is embedded in a rotating unbounded magnetic
fluid having density,ρ2, magnetic permeability,µ2, and a constant angular velocity,�2.
The system is subjected to an azimuthal periodic magnetic field with a forcing frequency,
ω0,

H = H0 cosω0teθ (1)

whereeθ is the unit vector in theθ direction. The fluids are homogeneous, incompressible
and exhibit interfacial tension. The tension forces act as restoring forces to the otherwise
damped oscillations of the interfacial surfaces. In the equilibrium condition the interfacial
surface exhibits a circular cylinder of radiusR.

We confine the analysis to consider weak viscous effects. These effects are believed
to be significant only within a thin vortical surface layer so that the motions elsewhere in
the liquid column may reasonably be assumed irrotational. Thus the viscous effects are
introduced through the normal damped stress term in the boundary condition at the surface
of separation.

In view of the weak viscous approximation, which is considered here, the governing
equations for a bulk of magnetic fluid phases are

∂u

∂t
+ u∂u

∂r
+ v
r

∂u

∂θ
− v

2

r
= − 1

ρ

∂P

∂r
(2)

∂v

∂t
+ u∂v

∂r
+ v
r

∂v

∂θ
+ vu

r
= − 1

ρr

∂P

∂θ
(3)

∂w

∂t
+ u∂w

∂r
+ v
r

∂w

∂θ
= − 1

ρ

∂P

∂z
(4)

where the cylindrical polar coordinates(r, θ, z) is used,P is the hydrostatic pressure and
V = uer + veθ + wk, represents the velocity of the liquid particle inside and outside the
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magnetic column. The continuity equation divV = 0 takes the form

∂u

∂r
+ 1

r

∂v

∂θ
+ ∂w
∂z
+ u
r
= 0. (5)

The magneto-quasistatic approximation is valid [18] for the problem at hand. With a
quasistatic model, it is recognized that relevant time rates of change are sufficiently low
that contributions due to a particular dynamical process are ignorable. The objective in
magnetic fluids is concerned with phenomena in which magnetic energy much exceeds
electrical energy storage and where the propagation times of electromagnetic waves are
short compared to those of interest to us. In accordance with the validity of the quasistatic
approximation a scalar function,φ, representing the magnetic potential, is introduced such
that

H = −∇φ (6)

where the differential equation satisfied byφ is Laplace’s equation

∇2φ = 0. (7)

In equilibrium u = u(0) = 0, v = v(0) = r� andw = w(0) = 0. The equilibrium
pressure is given by

P
(0)
j = 1

2ρj r
2�2

j + Cj (8)

where the superscript (0) refers to the equilibrium state andCj , j = 1, 2 are constants of
integration. From the continuity of the normal stress at the interface we get the jump in the
pressure to be zero, whence

C1− C2 = T

R
+ 1

2
R2(ρ2�

2
2− ρ1�

2
1)−

1

2
(µ1− µ2)H

2
0 cos2ω0t (9)

whereT is the surface-tension coefficient.

3. Perturbation equations and solutions

Consider the effect of a small disturbance to the interface atr = R. We assume that the
surface deflection is given by

r = R + ξ(θ, t) (10)

where

ξ(θ, t) = γ (t)eimθ (06 θ 6 2π) (11)

γ (t) is an unknown function of timet and the integerm is the azimuthal wavenumber.
A liquid system of infinite length exhibiting noz-dependency, which means that waves

in the longitudinal direction are suppressed and the longitudinal liquid velocityw = 0 and
∂
∂z
= 0, is treated here. Therefore, in the two-dimensional flow case the various perturbations

may be put in the form

F(r, θ, t) = f̂ (r, t)eimθ (12)

whereF stands for any (linear) physical quantity.



3588 Y O El-Dib

For two-dimensional flow the linearized form of the equations of motion may be written
as

ρ
∂u

∂t
+ ρ�∂u

∂θ
− 2ρ�v = −∂π

∂r
(13)

ρ
∂v

∂t
+ ρ�∂v

∂θ
+ 2ρ�u = −1

r

∂π

∂θ
(14)

∂u

∂r
+ 1

r

∂v

∂θ
+ u
r
= 0 (15)

where the functionπ represents the increment of the pressure(P = P (0)+π). Introducing
the stream functionψ(r, θ, t) such that

u = −1

r

∂ψ

∂θ
v = ∂ψ

∂r
. (16)

Then equations (13) and (14) in terms of the stream functionψ yield, after elimination of
the pressure potentialπ , the following equation:(

r2 ∂
2

∂r2
+ r ∂

∂r
−m2

)(
∂

∂t
+ im�

)
ψ̂(r, t) = 0 (17)

which has the solution(
∂

∂t
+ im�

)
ψ̂(r, t) = A∗1(t)rm + A∗2(t)r−m. (18)

Thus the stream functionsψj(r, θ, t), (j = 1, 2) inside and outside the magnetic column
are

ψ1(r, θ, t) = A1(t)r
meimθ (r 6 R) (19)

ψ2(r, θ, t) = A2(t)r
−meimθ (r > R) (20)

where

Aj(t) =
(
∂

∂t
+ im�j

)−1

A∗j (t) j = 1, 2 (21)

A1(t) andA2(t) are functions of time which are determined from the appropriate boundary
conditions.

With the kinematic boundary condition

uj = ∂ξ

∂t
+ im�jξ (r = R) (22)

the stream functionsψj(r, θ, t) are

ψ1(r, θ, t) = i
R

m

( r
R

)m [dγ

dt
+ im�1γ

]
eimθ (r 6 R) (23)

ψ2(r, θ, t) = i
R

m

(
R

r

)m [dγ

dt
+ im�2γ

]
eimθ (r > R). (24)

Also, the pressure potentials are given by

π1 = −R
m
ρ1

(
d2γ

dt2
+ 2i(m− 1)�1

dγ

dt
−m(m− 2)�2

1γ

)( r
R

)m
eimθ (r 6 R) (25)

π2 = R

m
ρ2

(
d2γ

dt2
+ 2i(m+ 1)�2

dγ

dt
−m(m+ 2)�2

2γ

)(
R

r

)m
eimθ (r > R). (26)
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In accordance with the two-dimensional flow considered here, Laplace’s equation (7)
for the magnetic potentialφ has the form(

r2 ∂
2

∂r2
+ r ∂

∂r
−m2

)
φ̂(r, t) = 0 (27)

which has the solution

φ1(r, θ, t) = B1(t)r
meimθ (r 6 R) (28)

θ2(r, θ, t) = B2(t)r
−meimθ (r > R) (29)

whereB1(t) andB2(t) are the functions of time which are determined from the appropriate
boundary conditions.

The magnetic boundary conditions which have to be satisfied at the surfacer = R are:
(1) The magnetic potentialφ should be continuous at the interface. Thus

φ1− φ2 = 0 (r = R). (30)

(2) The normal component of the magnetic displacement is continuous at the interface,
so that (

µ1
∂φ1

∂r
− µ2

∂φ2

∂r

)
+ 1

r

∂ξ

∂θ
(µ1− µ2)H0 cosω0t = 0 (r = R). (31)

In view of the above conditions (30) and (31), using the solutions given by (28) and
(29) the magnetic potentials inside and outside the magnetic column take the form

φ1(r, θ, t) = i

(
µ1− µ2

µ1+ µ2

)( r
R

)m
γ (t)H0 cosω0te

imθ (r 6 R) (32)

φ2(r, θ, t) = i

(
µ1− µ2

µ1+ µ2

)( r
R

)−m
γ (t)H0 cosω0te

imθ (r > R). (33)

The normal hydrodynamic stress is balanced with the normal magnetic stress [1].
Modifying the boundary condition at the surface should be an acceptable means of including
the small viscous effects. Thus we have

σrr = −P + 1

2
µ(H 2

r −H 2
θ )+

1

2
η
∂u

∂r
. (34)

The linearized normal stress condition is

π2− π1+ R(ρ2�
2
2− ρ1�

2
1)ξ +

1

R
H0 cosω0t

(
µ1
∂φ1

∂θ
− µ2

∂φ2

∂θ

)
+ T
R2
(m2− 1)ξ + 2η1

∂u1

∂r
− 2η2

∂u2

∂r
= 0 (r = R) (35)

where η1 and η2 are the coefficients of viscosity inside and outside the fluid column
respectively.

4. The characteristic equation

In deriving the characteristic equation we substitute from (25), (26), (32) and (33) into (35),
using (11) we obtain the following dispersion equation:

d2γ

dt2
+ 2

ρ1+ ρ2

{ m
R2
(η1(m− 1)+ η2(m+ 1))+ i(ρ2�2(m+ 1)+ ρ1�1(m− 1))

} dγ

dt

+ m

ρ1+ ρ2

{
T (m2− 1)

R3
− [ρ2�

2
2(m+ 1)+ ρ1�

2
1(m− 1)]
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+ m
R2
µ∗H 2

0 cos2ω0t + i
2m

R2
[�1η1(m− 1)+�2η2(m+ 1)]

}
γ = 0 (36)

which is a second-order differential equation with periodic coefficients of Mathieu type.
In order to eliminate the imaginary damping term from equation (36) we introduce the

following transformation:

γ (t) = 2(t) exp

{ −it

ρ1+ ρ2
(ρ2�2(m+ 1)+ ρ1�1(m− 1))

}
.

Then equation (36) reduces to

d22

dt2
+ 2η0

d2

dt
+ (δm + iη̃ + 4εq cos2ω0t)2 = 0 (37)

where

δm = 1

(ρ1+ ρ2)

[
m(m2− 1)

T

R3
+ 1

(ρ1+ ρ2)
(ρ2�2(m+ 1)+ ρ1�1(m− 1))2

−m(ρ2�
2
2(m+ 1)+ ρ1�

2
1(m− 1))

]
(38)

η0 = m

R2(ρ1+ ρ2)
[η1(m− 1)+ η2(m+ 1)] (39)

η̃ = 2m2

R2(ρ1+ ρ2)
[�1η1(m− 1)+�2η2(m+ 1)]. (40)

q̃ = µ∗m2

4R2(ρ1+ ρ2)
H 2

0 µ∗ = (µ2− µ1)
2

µ2+ µ1
. (41)

The small dimensionless parameter,ε, is introduced such thatH 2
0 = εH̃ 2 so thatq̃ = εq.

5. Stability analysis for the case of a static magnetic field

For a static case asω0→ 0, equation (37) reduces to

d22

dt2
+ 2η0

d2

dt
+ (δm + 4q̃ + iη̃)2 = 0 (42)

which is a linear differential equation with constant coefficients and can be satisfied by
2 = exp(St), whereS is a complex constant given by

S2+ 2η0S + (δm + 4q̃ + iη̃) = 0. (43)

This dispersion relation is a quadratic inS with complex coefficients. Necessary and
sufficient conditions for stability can be obtained. Using the Hurwitz criterion for a quadratic
polynomial with complex coefficients [19]. Hence the following conditions are imposed to
control the stability criteria in the static case:

η0 > 0 and 4η2
0(δm + 4q̃)− η̃2 > 0. (44)

It is noted that the first condition is trivially satisfied whenm > 1 or η2 > η1 for all the
azimuthal wavenumbersm. In the case of non-viscous fluids stability occurs when

δm + 4q̃ > 0. (45)

In the absence of the magnetic field, the system is stable asδm > 0.
In the absence of the angular velocity�j , the above stability condition reduces to

(m2− 1)T + Rmµ∗H 2
0 > 0 (46)
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and so, for the non-axisymmetric perturbations, the system is always stable. However, our
results do agree with those of Malik and Singh [3]. The instability occurs if�1 > �2 even
when the non-axisymmetric perturbations are considered.

The presence of the angular velocity,�j , changes the above mechanism. In terms of
the azimuthal magnetic field the stability is present when

H 2
0 > Hc = −R

2(ρ1+ ρ2)

m2µ∗
δm. (47)

Condition (47) is trivially satisfied for positive values ofδm. It can be noted that when
m = 1, the parameterδm is

δ1 = 2ρ2(ρ2− ρ1)�
2
2

(ρ2− ρ1)2
.

Thus condition (47) is trivially satisfied asρ2 > ρ1; m = 1. This shows that the difference
between the densities for the two fluids plays an important role in the stability criteria; a
role that was not observed before. To examine the influence of the rotation on the stability,
we take for simplicityρ1 = ρ2 = ρ in equation (38). Hence we haveδm > 0 when

(�2−�1)
2 <

2mT

ρR3
.

At this stage the magnetic field has no effect. While the stabilizing influence of the magnetic
field appears when

(�2−�1)
2 >

2mT

ρR3
.

For negative values ofδm the stability condition (45) can be satisfied if the inequality
(46) is true. A case which was not possible in the absence of the magnetic field. This
shows the stabilizing nature of the constant azimuthal magnetic field. The increase of the
angular velocity,�j , increases the termδm and large values ofH 2

0 are needed to suppress
the destabilizing effect due to the rotation.

In the presence of viscosity, the critical magnetic field,Hc, becomes:

H ∗c = −
R2(ρ1+ ρ2)

m2µ∗
δ∗m (48)

where

δ∗m = δm − η̃2/4η2
0. (49)

The stability is trivially satisfied asδm > η̃2/4η2
0. Otherwise large values ofH 2

0 are needed
to suppress the destabilizing effect due to the presence of a small viscosity in a rotating
medium.

5.1. Numerical estimation in the case of a static field

Due to the importance of the sign of the dispersion termδm, in the absence or the presence
of the magnetic field, the numerical calculations forδm are made for a sample example.

The plane(δm, R) shown in figures 1 and 2 depicts the dispersion termδm from relation
(38) for a particular system whereρ1 > ρ2. The graph contains the curvesδ2 : δ6. The
stable and unstable regions are denoted by the symbolsS andU respectively. The case of
�1 < �2 appears in figure 1, while the case of�1 > �2 is shown in figure 2. Instability
is revealed in the case ofm = 1 asρ1 > ρ2. Form > 1, the stability occurs for relatively
small values of the radiusR. Suddenly instability occurs asR is increased. The increase in
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Figure 1. The dispersion termδm for a system havingρ1 = 0.998 23 g cm−3, ρ2 =
0.879 g cm−3, T = 35 dynes cm−1, �1 = 3 and�2 = 5

Figure 2. As in figure 1, except that�1 > �2 (�1 = 8 and�2 = 3).

the azimuthal wavenumber increases the stable region. It is observed that, as�1 > �2, the
stable region has decreased to leave a large unstable region. This shows that a destabilizing
influence arises as the fluid column rotates faster than the fluid in the outer column.

In figure 3, we plot log(H 2
0 ) versus the radiusR. The graph depicts the critical magnetic

curve,Hc, from relation (47) which is separating the stable region from the unstable region.
Six different azimuthal wavenumbers(m = 1 : 6) are presented. The region which lies
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Figure 3. The (logH 2
0 , R)-plane for the system as in figure 1. The curves are given by the

relation (47) form = 1 : 6 and marked by the numbers 1–6 respectively.

above the curveHc is the stable region. The region which lies below the critical curve
Hc denotes the unstable region. It is found that the increase of the azimuthal wavenumber
decreases the stable region asH0 is increased and decreases the unstable region asR is
increased. We observe that asR is increased, larger values ofH 2

0 are required in order to
achieve the stability. The stable region for specifiedm is increased as the constant azimuthal
magnetic field is increased. Thus the magnetic field plays a stabilizing role.

In figure 4, the graph is a comparison between the system of non-viscous fluids with
that system having a small viscosity. The calculations for the transition curves,Hc and
H ∗c , are made in the case ofm = 1 as an example. Due to the presence of the viscosity
the unstable region is increased. It is clear from equation (49) that, as�j is increased, the
parameter̃η is increased and it follows that larger values ofH 2

0 are needed to achieve the
stability. This shows that the rotating fluids in the presence of a small viscosity lead to
the existence of an additional unstable region that was not found in the rotating fluids of a
non-viscous column. It can be noted that this additional unstable region will disappear in
the case of non-rotating fluids even in the presence of viscosity.

6. Non-viscous column stressed by an oscillating field

As a limiting case, whereη1 andη2 tend to zero, equation (37) reduces to

d22

dt2
+ (δm + 4q̃ cos2ω0t)2 = 0. (50)

In order to put equation (50) in the canonical form, we use the following notations:

a = 1

ω2
0

(δm + 2q̃) q0 = q̃

ω2
0

and τ = ω0t.
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Figure 4. The (logH 2
0 , R)-plane for a constant magnetic field. Two transition curves are

displayed,H ∗c (for the viscous case) andHc (for the non-viscous case).

Thus we have

d22

dτ 2
+ (a + 2q0 cos 2τ)2 = 0. (51)

Equation (51) is the well-known Mathieu differential equation which has been studied
extensively.

The condition for stability reduces to the problem of the bounded regions of the Mathieu
functions for which Mclachlan [20] gives the condition of stability as

q̃2+ 4(ω2
0 − δm)q̃ + 2δm(ω

2
0 − δm) > 0. (52)

For arbitrary frequencyω0 condition (52) can be satisfied when

δm + 2q̃ > 0 (53)

q̃2− 4δmq̃ − 2δ2
m > 0. (54)

In terms of the amplitude of the magnetic fieldH0 conditions (53) and (54) become

H 2
0 > 2Hc (55)

and

H 4
0 + 16HcH

2
0 − 32H 2

c > 0 (56)

namely

(H 2
0 + 4(2+

√
6)Hc)(H

2
0 + 4(2−

√
6)Hc) > 0. (57)

In view of the sign ofδm, condition (57) reduces to

H 2
0 + 4(2+

√
6)Hc > 0 δm > 0

H 2
0 + 4(2−

√
6)Hc > 0 δm < 0.
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Since condition (55) is trivially satisfied whenδm < 0, and 4(
√

6− 2) < 2, the stability
occurs due to the presence of the frequencyω0 as

H 2
0 + 4(2+

√
6)Hc > 0 δm > 0 (58)

and

H 2
0 > 2Hc δm < 0. (59)

The comparison between the stability condition in the case of a static field(H 2
0 > Hc) and

the stability conditions mentioned above shows that the oscillating magnetic field plays a
stabilizing role. But the field frequencyω0 has contracted this influence.

In the terms ofH 2
0 the stability condition (52) can be rearranged in the form:

H 4
0 + 16

R2(ρ1+ ρ2)

m2µ∗
(ω2

0 − δm)H 2
0 + 32

R4(ρ1+ ρ2)
2

m4µ∗2
δm(ω

2
0 − δm) > 0 (60)

which can be written in the form

(H 2
0 −H ∗1 )(H 2

0 −H ∗2 ) > 0. (61)

It follows that the above condition is satisfied if

H 2
0 > H ∗1 or H 2

0 < H ∗2 (H ∗1 > H ∗2 )

where

H ∗1,2 =
8R2(ρ1+ ρ2)

m2µ∗
[−(ω2

0 − δm)± ((ω2
0 − δm)(ω2

0 − 3
2δm))

1/2]. (62)

For arbitrary values ofH0, condition (60) can be satisfied when bothH ∗1 andH ∗2 have
negative values. This can be achieved by using the Hurwitz examination. Hence, two
conditions are required:

ω2
0 − δm > 0 and δm > 0.

The first condition is trivially satisfied for negativeδm, while the second condition falls.
This means that a stable region or an unstable region does not reveal for all values ofH0.
Thus a stable region appears here that was unstable in the absence of the field. Since the
system is stable in the absence of the field asδm > 0, instability occurs for all values ofH0

as the field frequencyω0 satisfiesω2
0 < δm; δm > 0.

In graphing condition (60), we are careful to display a broken curve that represents the
case ofδm = 0 shown in figure 5. This broken curve separates the stable region(δm > 0)
from the unstable region(δm < 0) in the absence of the field. The curveH ∗1 is calculated
from relation (62) which represents the transition curve whereH ∗2 has negative values for
all R. The stability diagram in the presence of an oscillating magnetic field shows that there
is a stable region,S∗, that was unstable whenH0 = 0. Also, there is an unstable region,
U ∗, that was stable in the absence of the field.

Inspection of figures 3 and 5 shows that the presence of the frequencyω0 makes the
field more stabilizing in the case ofδm < 0 and the appearance of the unstable regionU∗ in
the case ofδm > 0 does not appear in figure 3, for the case of a constant field. This shows
that the presence of the field frequency plays a dual role in the stability criteria. Figure 6,
represents the stability diagram as given in figure 5 form = 1, 2, 3, 4. It is found that
the increase of the azimuthal wavenumberm increases both the stable regionS∗ and the
unstable regionU ∗.
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Figure 5. The same stability diagram considered in figure 4 for an oscillating magnetic field
with frequencyω0 = 10 Hz. The calculations are made for the transition curves (62). The
broken curve shows the case ofδ2 = 0.

Figure 6. For the same system considered in figure 5 with the variation of the wavenumberm

(m = 1 : 4). ∗ refers to the case ofm = 1,× refers to the case ofm = 2,− represents the case
of m = 3 and◦ refers to the case ofm = 4.
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7. Viscous damping effects and multiple time-scales formulation

An equation of the form (37) is known as the damped Mathieu equation with complex
coefficients. We now need to determine the structure of the stability conditions for the
damped Mathieu equation (37). To accomplish this, we may use a perturbation technique.

We use the method of multiple scales as described by Nayfeh and Mook [21] to obtain
an approximate solution and analyse the stability criteria. In accordance with this scheme
a fast time-scale,T0, and slow time-scale,T1, are introduced such thatT0 = t andT1 = εt .
The differential operator can now be expressed as the derivative expansions:

d . .

dt
= ∂ . .

∂T0
+ ε ∂ . .

∂T1
+ ε2 ∂ . .

∂T2
+ · · ·

d2 . .

∂t2
= ∂2 . .

∂T 2
0

+ 2ε
∂2 . .

∂T0∂T1
+ ε2

(
∂2 . .

∂T 2
1

+ 2
∂2 . .

∂T0∂T2

)
+ · · · .

One assumes that the solution of equation (37) can be represented by

2(t; ε) = 20(T0, T1)+ ε21(T0, T1)+ ε222(T0, T1)+ · · · . (63)

We insert the perturbed solution (63) in Mathieu’s equation (37), transform the time
derivatives and collect coefficients of each power ofε. These equations must hold
independently because powers ofε are linearly independent. The resulting equations can
be solved successively. Thus we have

ε0 :
∂220

∂T 2
0

+ 2η0
∂20

∂T0
+ (δm + iη̃)20 = 0 (64)

ε1 :
∂221

∂T 2
0

+ 2η0
∂21

∂T0
+ (δm + iη̃)21 = −2

∂220

∂T0∂T1
− 2η0

∂20

∂T1
− 4q20 cos2ω0T0. (65)

With this approach it turns out to be convenient to write the solution of equation (64) in
the form

20(T0, T1) = A(T1) exp[(σ + iω)T0] + CC (66)

whereA is an unknown complex function,CC represents a complex conjugate,σ andω
are real. Bothσ andω are satisfied in the following equations:

σ 2− ω2+ 2ση0+ δm = 0 and 2σω + 2ωη0+ η̃ = 0. (67)

The elimination of the parameterσ yields

4ω4+ 4(η2
0 − δm)ω2− η̃2 = 0. (68)

This dispersion relation is a quadratic inω2 with complex coefficients and having two
different roots. We will consider only the positive root for convenience. Necessary and
sufficient conditions for stability in the zero-order case can be obtained from condition (44)
as q̃ tends to zero. Hence the following conditions are imposed to control the stability
criteria in the zero-order case:

η0 > 0 and δm > η̃2/4η2
0. (69)

The solution of equation (65) (to the first order inε) can be obtained by the knowledge of
the zero-order solution inε. Substituting equation (66) into (65) yields

∂221

∂T 2
0

+ 2η0
∂21

∂T0
+ (δm + iη̃)21 = −2

{
[(σ + η0)+ iω]

∂A
∂T1
+ qA

}
exp[(σ + iω)T0]

−qA {exp[i(ω + 2ω0)T0] + exp[i(ω − 2ω0)T0]} exp(σT0)+ CC. (70)
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Equation (70) contains non-homogeneous terms. The uniform solution is required
to eliminate the secular terms. This elimination introduces the solvability condition
corresponding to the terms containing the factor exp[(σ + iω)T0]. Thus, in order to analyse
the solution of equation (70) we need to distinguish between two cases: the first one is the
non-resonance case, when the frequencyω0 of the oscillating magnetic field is not near the
frequencyω, the second case is the resonance case which arises when the frequencyω0 is
nearω.

(i) The case whenω0 is not nearω (the non-resonant case). In order to obtain a
uniformly valid expansion the coefficient of the factor exp[(σ + iω)T0] in equation (70)
must vanish. Thus we have

∂A
∂T1
− q(η̃ + 2iω2)

2ω(2ω2+ η2
0 − δm)

A = 0 (71)

where equations (67) are used. The solution of equation (71) shows that stability occurs in
the non-resonant case whenη̃ω < 0.

(ii) The resonant case. In order to obtain a solution in the neighbourhood of the resonant
case, we express the nearness ofω0 to ω by introducing the detuning parameterζ according
to

ω0 = ω + εζ, (72)

and hence

−i(ω − 2ω0)T0 = iωT0+ 2iζT1. (73)

Thus the secular terms can be eliminated when
∂A
∂T1
+ qω

2iω2− η̃ {2A+ Ā exp(2iζT1)} = 0. (74)

This equation admits a non-trivial solution of the form

A(T1) = (α(T1)+ iβ(T1)) exp(iζT1) (75)

with real functionsα and β. Substituting (75) into equation (74) and separating the
solvability condition into real and imaginary parts we obtain the equations governingα

andβ in the form(
∂

∂T1
− 3η̃q

4ω(2ω2+ η2
0 − δm)

)
α(T1)−

(
ζ − qω

2(2ω2+ η2
0 − δm)

)
β(T1) = 0 (76)(

∂

∂T1
− η̃q

4ω(2ω2+ η2
0 − δm)

)
β(T1)+

(
ζ − 3qω

2(2ω2+ η2
0 − δm)

)
α(T1) = 0. (77)

These coupled linear equations have the solutions:

α(T1) =
(
ζ − qω

2(2ω2+ η2
0 − δm)

)
exp(QT1) (78)

β(T1) =
(
Q− 3η̃q

4ω(2ω2+ η2
0 − δm)

)
exp(QT1) (79)

where the constant,Q, is given by

Q2−
(

η̃q

ω(2ω2+ η2
0 − δm)

)
Q+

{
3η̃2q2

16ω(2ω2+ η2
0 − δm)

+
(
ζ − 3qω

2(2ω2+ η2
0 − δm)

)
×
(
ζ − qω

2(2ω2+ η2
0 − δm)

)}
= 0. (80)
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Dispersion relation (80) is a quadratic equation in the growth rateQ. Necessary and
sufficient conditions for stability are governed by the following inequalities:ωη̃ < 0 and

ζ 2−
(

2qω

(2ω2+ η2
0 − δm)

)
ζ − 3q2

4(2ω2+ η2
0 − δm)

> 0. (81)

This inequality can be satisfied when

(ζ − ζ ∗1 )(ζ − ζ ∗2 ) > 0

i.e.

ζ > ζ ∗1 and ζ < ζ ∗2 (ζ ∗1 > ζ ∗2 ) (82)

where

ζ ∗1,2 =
q

2(2ω2+ η2
0 − δm)

{2ω ±
√

3δm − 2ω2− 3η2
0}. (83)

In view of (72) and in terms of the amplitude of the magnetic fieldH 2
0 the stability conditions

in the resonance case can be sought in the form

H 2
0 < H ∗∗1 =

8R2(ρ1+ ρ2)(ω0− ω)(2ω2+ η2
0 − δm)

m2µ∗
(

2ω +
√

3δm − 2ω2− 3η2
0

) (84)

H 2
0 > H ∗∗2 =

8R2(ρ1+ ρ2)(ω0− ω)(2ω2+ η2
0 − δm)

m2µ∗
(

2ω −
√

3δm − 2ω2− 3η2
0

) (85)

provided thatδ∗m > 0. The curvesH ∗∗1 andH ∗∗2 represent the transition curves separating
stable from unstable regions. In the limiting case of a non-viscous fluid we have

lim
ηj→0

ω2 = δm
hence the above transition curves reduce to

Ĥ1 = 8R2(ρ1+ ρ2)(ω0−
√
δm)
√
δm

3m2µ∗
(86)

Ĥ2 = 8R2(ρ1+ ρ2)(ω0−
√
δm)
√
δm

m2µ∗
. (87)

7.1. A numerical illustration

The numerical calculations for the transition curvesH ∗∗1 andH ∗∗2 (for the viscous case)
and the transition curveŝH1 andĤ2 (for the non-viscous case) in the resonance case ofω0

is nearω are displayed in figure 7. In this graphH 2
0 is plotted versus the column radius

R. The calculations are made in the case for bothδm > 0 and δ∗m > 0, for a system
having ρ1 = 0.879 g cm−3, ρ2 = 0.998 23 g cm−3, �1 = 8 and�2 = 3, ω0 = 20 Hz,
η1 = 0.8 g cm−1 s

−1
andη2 = 1.5 g cm−1 s

−1
andµ∗ = 37 with the azimuthal wavenumber

m = 2.
The curves labelled× represent the transition curves in the non-viscous case. The

curves labelled◦ refer to the transition curves in the presence of a small viscosity. The
broken curve represents the case ofδ∗m = 0. This line separates the zero-order stable region
(S region) from the zero-order unstable region (U region). The location of the broken curve
depends on the viscosityηj , the angular velocity�j and the azimuthal wavenumberm.



3600 Y O El-Dib

Figure 7. The stability diagram in the resonance case ofω0 is near ω. For a system
having ρ1 = 0.879 g cm−3, ρ2 = 0.998 23 g cm−3, �1 = 8 and�2 = 3, ω0 = 20 Hz,
η1 = 0.8 g cm−1 s−1 andη2 = 1.5 g cm−1 s−1 andµ∗ = 37 with the azimuthal wavenumber
m = 2. The curves labelled× refer to the non-viscous case, while curves labelled• refer to
the viscous case. The broken curve represents the case ofδ∗2 = 0. The diagram indicates the
transition curves (84)–(87).

It is observed that theS region is decreased as the parameterη̃ is increased. In the
stability diagram shown by figure 7 the broken curve lies atR = 0.773 845, the non-viscous
resonance point lies atR = 0.645 24 while the resonance point for the viscous transition
curves is atR = 0.523 103. The graph shows that the resonance region has slightly increased
in the width due to the presence of a small viscosity. Also, the resonance point has been
shifted to the direction of decreasing the radiusR.

Figure 8 represents the same system as in figure 7, but in the viscous case whereη1

andη2 have interchanged (η1 = 1.5 g cm−1 s−1 andη2 = 0.8 g cm−1 s−1), with two cases
for the field frequencyω0 (ω0 = 20 Hz andω0 = 25 Hz), while the other parameters are
held fixed. It is found that asη1 > η2 the S region has decreased in the width with an
increase in theU region, where the broken curve lies atR = 0.652 025. Furthermore the
resonance point has shifted to the direction of increasingR and lies atR = 0.600 616,
where the frequencyω0 = 20 Hz. When the frequencyω0 is changed to the value 25 Hz,
the resonance region has slightly decreased with large shifting for the resonance point to
the valueR = 0.506 101. Thus one can say that the resonance point was affected by the
field frequencyω0 and the azimuthal wavenumberm. The increase of the frequencyω0

decreases the value of the resonance point, while the increase ofm increases this resonance
point.

8. Conclusion

In this work a rigid-body rotating magnetic fluid column of a weak viscosity is formulated
in the presence of a periodic azimuthal magnetic field. With a weak viscosity, it is
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Figure 8. The same system as in figure 7, except thatη1 = 1.5 g cm−1 s−1 and η2 =
0.8 g cm−1 s−1, with two different values ofω0 (ω0 = 20 Hz andω0 = 25 Hz). − refers to
the caseω0 = 25 Hz.• refers to the caseω0 = 20 Hz.

recognized that viscous effects are included in the boundary condition of the normal
stress tensor balance. So that the field equation governing the fluid motion is the Laplace
equation.

Accordingly the linear analysis, a parametric dispersion equation of Mathieu type, is
obtained with complex coefficients. The perturbation analysis of the multiple scales method
is used. A parametric resonance occurs as the field frequencyω0 approaches the perturbation
frequencyω.

The stability examination yields the following results.
(i) Small values of the radiusR has a stabilizing effect. The destabilizing influence

suddenly appears asR is increased. The presence of a constant magnetic field suppresses
the destabilizing role for large values ofR. A more stabilizing influence for the radiusR
occurs as�2 > �1 or ρ2 > ρ1 or η2 > η1. The stability reveals for all values ofR in the
case ofm = 1 andm = 2 asρ2 > ρ1.

(ii) The increase of the azimuthal wavenumberm increases the stable region in the
absence of the magnetic field. In the presence of a constant magnetic field, a more stabilizing
influence for the radiusR is associated with contraction for the stabilizing influence of the
field asm is increased.

(iii) A small viscosity plays a destabilizing influence due to the presence of the angular
velocity �j . This destabilizing effect still occurs in the presence of the constant or the
periodic magnetic field.

(iv) A dual role for the field frequencyω0 is observed where some unstable region is
changed to a stable region associated whilst some stable region is changed to an unstable
region in the presence of an oscillating magnetic field.
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